Задача кластеризации
Только что мы изучили задачу классификации, относящуюся к стратегии "обучение с учителем".
В этой части лекции мы введем понятия кластеризации, кластера, кратко рассмотрим классы методов, с помощью которых решается задача кластеризации, некоторые моменты процесса кластеризации, а также разберем примеры применения кластерного анализа.
Задача кластеризации сходна с задачей классификации, является ее логическим продолжением, но ее отличие в том, что классы изучаемого набора данных заранее не предопределены.
Синонимами термина "кластеризация" являются "автоматическая классификация", "обучение без учителя" и "таксономия".
Кластеризация предназначена для разбиения совокупности объектов на однородные группы (кластеры или классы). Если данные выборки представить как точки в признаковом пространстве, то задача кластеризации сводится к определению "сгущений точек".
Цель кластеризации - поиск существующих структур.
Кластеризация является описательной процедурой, она не делает никаких статистических выводов, но дает возможность провести разведочный анализ и изучить "структуру данных".
Само понятие "кластер" определено неоднозначно: в каждом исследовании свои "кластеры". Переводится понятие кластер (cluster) как "скопление", "гроздь".
Кластер можно охарактеризовать как группу объектов, имеющих общие свойства.
Характеристиками кластера можно назвать два признака:
• внутренняя однородность;
• внешняя изолированность.
Вопрос, задаваемый аналитиками при решении многих задач, состоит в том, как организовать данные в наглядные структуры, т.е. развернуть таксономии.
Наибольшее применение кластеризация первоначально получила в таких науках как биология, антропология, психология. Для решения экономических задач кластеризация длительное время мало использовалась из-за специфики экономических данных и явлений.