Очистка данных
Очистка данных (data cleaning, data cleansing или scrubbing) занимается выявлением и удалением ошибок и несоответствий в данных с целью улучшения качества данных.
Проблемы с качеством встречаются в отдельных наборах данных - таких как файлы и базы данных. Когда интеграции подлежит множество источников данных (например в Хранилищах, интегрированных системах баз данных или глобальных информационных Интернет-системах), необходимость в очистке данных существенно возрастает. Это происходит оттого, что источники часто содержат разрозненные данные в различном представлении. Для обеспечения доступа к точным и согласованным данным необходима консолидация различных представлений данных и исключение дублирующейся информации. Специальные средства очистки обычно имеют дело с конкретными областями - в основном это имена и адреса - или же с исключением дубликатов.
Метод очистки данных должен удовлетворять ряду критериев [93].
1. Он должен выявлять и удалять все основные ошибки и несоответствия, как в отдельных источниках данных, так и при интеграции нескольких источников.
2. Метод должен поддерживаться определенными инструментами, чтобы сократить объемы ручной проверки и программирования, и быть гибким в плане работы с дополнительными источниками.
3. Очистка данных не должна производиться в отрыве от связанных со схемой преобразования данных, выполняемых на основе сложных метаданных.
4. Функции маппирования для очистки и других преобразований данных должны быть определены декларативным образом и подходить для использования в других источниках данных и в обработке запросов.
5. Инфраструктура технологического процесса должна особенно интенсивно поддерживаться для Хранилищ данных, обеспечивая эффективное и надежное выполнение всех этапов преобразования для множества источников и больших наборов данных.
На сегодняшний день интерес к очистке данных возрастает. Целый ряд исследовательских групп занимается общими проблемами, связанными с очисткой данных, в том числе, со специфическими подходами к Data Mining и преобразованию данных на основании сопоставления схемы. В последнее время некоторые исследования коснулись единого, более сложного подхода к очистке данных, включающего ряд аспектов преобразования данных, специфических операторов и их реализации.
Этапы очистки данных
В целом, очистка данных включает следующие этапы [93] (ниже изложено краткое описание содержание этих этапов, в этом же источнике можно найти подробное их описание).
1. Анализ данных.
2. Определение порядка и правил преобразования данных.
3. Подтверждение.
4. Преобразования.
5. Противоток очищенных данных.